2022. 11. 2. 21:28ㆍ수학
A funny fact came from this problem.
Consider the two ordered basis of $M_{n}(F)$ which are
\[\alpha=\{E_{11},E_{12},\cdots,E_{1n},\cdots,E_{n1},\cdots,E_{nn}\}\]
\[\beta=\{E_{11},E_{21},\cdots,E_{n1},\cdots,E_{1n},\cdots,E_{nn}\}\]
We have $[L_{B}]=[L_{B}(E_{11})\ L_{B}(E_{12})\ \cdots\ L_{B}(E_{nn})]$. Consider $BE_{ij}$. We have ${\rm col}_{j}(BE_{ij})=Be_{i}={\rm col}_{i}(B)$. Thus, first column is form of $B_{11},B_{21},\cdots,B_{n1},\cdots,0$. From that point we get
For basis $\beta$
\[ [L_{B}]=\begin{bmatrix}
B_{11} & B_{12} & \cdots & B_{1n}\\
& & \cdots\\
B_{n1} & B_{n2} & \cdots & B_{nn}\\
& & & & \ddots\\
& & & & & B_{11} & B_{12} & \cdots & B_{1n} \\
& & & & & & & \cdots\\
& & & & & B_{n1} & B_{n2} & \cdots & B_{nn} \\
\end{bmatrix} = \begin{bmatrix} B \\ & B \\ & & \ddots \\ & & & B \\ & & & & B \end{bmatrix} \]
For basis $\alpha$
\[ [L_{B}]=\begin{bmatrix}
B_{11}I_{n} & B_{12}I_{n} & \cdots & B_{1n}I_{n}\\
B_{21}I_{n} & B_{22}I_{n} & \cdots & B_{2n}I_{n}\\
\vdots & \vdots & \cdots & \vdots \\
B_{n1}I_{n} & B_{n2}I_{n} & \cdots & B_{nn}I_{n}
\end{bmatrix} \]
Then the $\det([L_{B}])=\det(B)^{n}$ from basis $\beta$. If you are working with a basis $\alpha$ we will have difficulty in finding the determinant of that matrix. One idea you can get from here is a change of basis may help you to find the determinant easier!
'수학' 카테고리의 다른 글
$x^2+xy+y^2$꼴 자연수 (0) | 2023.09.02 |
---|---|
FFT(고속 푸리에 변환) (0) | 2023.02.25 |
Lucy-Hedgehog Algorithm (0) | 2022.09.18 |
Extension of Wilson's Theorem and its application (12) | 2022.07.14 |
Modulo Prime Power Trick (0) | 2022.01.28 |