2022. 1. 23. 21:14ㆍ수학
\[f(n) = \sum_{d|n} g(d)\]
이라고 하자. 이때 $g(n)$의 값을 구하고 싶다. 이때 적용되는 식이 뫼비우스 역공식이다.
\[g(n)= \sum_{d|n} f(d)\mu(\frac{n}{d})\]
$f$가 곱셈적 함수이고 $f(n) = \sum_{d|n} g(d)$이면 $g$ 역시 곱셈적 함수이다.
- Notation
$[P=k]$ : $P=k$일 때 1 아니면 0
$\epsilon(n)$ : $[n=1]$
$\sum_{d|n} \mu(d) =\epsilon(n)$
$\tau(n)$ : $n$의 약수의 개수
$a \perp b$은 $\gcd(a,b)=1$라는 뜻
\[1.\ \ \sum_{i=1}^{n} \sum_{j=1}^{m} \gcd(i, j)\]
\[\sum_{d=1}^{\min(n,m)} d \sum_{i=1}^{n} \sum_{j=1}^{m} [\gcd(i, j)=d]\]
$i=dp,\ j=dq$이면
\[\sum_{d=1}^{\min(n,m)} d \sum_{p=1}^{\left[\frac{n}{d}\right]} \sum_{q=1}^{\left[\frac{m}{d}\right]} [\gcd(p,q)=1]\]
\[\epsilon(\gcd(p,q))=[\gcd(p,q)=1]=\sum_{s|\gcd(p,q)} \mu(s) = \sum_{s|p,\ s|q} \mu(s)\]
\[\sum_{d=1}^{\min(n,m)} d \sum_{p=1}^{\left[\frac{n}{d}\right]} \sum_{q=1}^{\left[\frac{m}{d}\right]} \sum_{s|p,\ s|q} \mu(s)\]
\[\sum_{d=1}^{\min(n,m)} d \sum_{p=1}^{\left[\frac{n}{d}\right]} \sum_{q=1}^{\left[\frac{m}{d}\right]} \sum_{s=1}^{\min(\left[\frac{n}{d}\right],\ \left[\frac{m}{d}\right])} \mu(s)[s|p][s|q]\]
$[s|p][s|q]=1$이면 $[s|p]=[s|q]=1$이므로 $p=s\alpha,\ q=s\beta$
\[\sum_{d=1}^{\min(n,m)} d \sum_{s=1}^{\min(\left[\frac{n}{d}\right],\ \left[\frac{m}{d}\right])} \mu(s) \sum_{\alpha=1}^{\left[\frac{n}{sd}\right]} \sum_{\beta=1}^{\left[\frac{m}{sd}\right]} 1\]
\[\sum_{d=1}^{\min(n,m)} d \sum_{s=1}^{\min(\left[\frac{n}{d}\right],\ \left[\frac{m}{d}\right])} \mu(s) \left[\frac{n}{sd}\right] \left[\frac{m}{sd}\right]\]
합을 간단히 만들자.
\[1 \le d \le \min(n,m)\]
\[1 \le s \le \min(\left[\frac{n}{d}\right], \left[\frac{m}{d}\right])\]
\[d \le ds \le \min(n,m)\]
\[1 \le d \le k=ds \le \min(n,m)\]
$d|k$가 성립해야 한다.
\[\sum_{d=1}^{\min(n,m)} \sum_{s=1}^{\min(\left[\frac{n}{d}\right],\ \left[\frac{m}{d}\right])}\]
는 다음과 같이 쓸 수 있다.
\[\sum_{k=1}^{\min(n,m)} \sum_{d=1}^{\min(n,m)}\]
$d|k$인 조건과 $1 \le d \le \min(n,m)$으로 인해 아래와 같이 쓰인다.
\[\sum_{k=1}^{\min(n,m)} \sum_{d|k}\]
\[\sum_{k=1}^{\min(n,m)} \left[\frac{n}{k}\right] \left[\frac{m}{k}\right] \sum_{d|k} d\mu(\frac{k}{d}) \]
좀 더 간단히 하면
\[n=\sum_{d|n} \phi(d)\]
\[\phi(n) = \sum_{d|n} d\mu(\frac{k}{d})\]
\[\sum_{k=1}^{\min(n,m)} \left[\frac{n}{k}\right] \left[\frac{m}{k}\right] \phi(k) \]
\[2.\ \ \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{lcm}(i, j)\]
$\operatorname{lcm}(i, j) = \frac{ij}{\gcd(i,j)}$ 이므로
\[\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{ij}{\gcd(i,j)}\]
\[\sum_{d=1}^{\min(n,m)} \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{ij}{d}[\gcd(i,j)=d]\]
$i=dp,\ j=dq$라 두자.
\[\sum_{d=1}^{\min(n,m)} \sum_{p=1}^{\left[\frac{n}{d}\right]} \sum_{q=1}^{\left[\frac{m}{d}\right]} dpq [\gcd(p,q)=1]\]
\[\epsilon(\gcd(p,q))=[\gcd(p,q)=1]=\sum_{s|\gcd(p,q)} \mu(s) = \sum_{s|p,\ s|q} \mu(s)\]
\[\sum_{d=1}^{\min(n,m)} \sum_{p=1}^{\left[\frac{n}{d}\right]} \sum_{q=1}^{\left[\frac{m}{d}\right]} dpq \sum_{s|p,\ s|q} \mu(s)\]
\[\sum_{d=1}^{\min(n,m)} \sum_{p=1}^{\left[\frac{n}{d}\right]} \sum_{q=1}^{\left[\frac{m}{d}\right]} dpq \sum_{s=1}^{\min(\left[\frac{n}{d}\right],\ \left[\frac{m}{d}\right])} \mu(s)[s|p][s|q]\]
\[\sum_{d=1}^{\min(n,m)} d \sum_{s=1}^{\min(\left[\frac{n}{d}\right],\ \left[\frac{m}{d}\right])} \mu(s) \sum_{p=1}^{\left[\frac{n}{d}\right]} \sum_{q=1}^{\left[\frac{m}{d}\right]} pq[s|p][s|q]\]
$[s|p][s|q]=1$이면 $[s|p]=[s|q]=1$이므로 $p=s\alpha,\ q=s\beta$
\[\sum_{d=1}^{\min(n,m)} d \sum_{s=1}^{\min(\left[\frac{n}{d}\right],\ \left[\frac{m}{d}\right])} \mu(s) s^{2} \sum_{\alpha=1}^{\left[\frac{n}{sd}\right]} \sum_{\beta=1}^{\left[\frac{m}{sd}\right]} \alpha\beta\]
\[\sum_{d=1}^{\min(n,m)} \sum_{s=1}^{\min(\left[\frac{n}{d}\right],\ \left[\frac{m}{d}\right])} d\mu(s) s^{2} \frac{\left[\frac{n}{sd}\right](\left[\frac{n}{sd}\right]+1)}{2} \frac{\left[\frac{m}{sd}\right](\left[\frac{m}{sd}\right]+1)}{2}\]
합을 간단히 만들면
\[\sum_{k=1}^{\min(n,m)} \frac{\left[\frac{n}{k}\right](\left[\frac{n}{k}\right]+1)}{2} \frac{\left[\frac{m}{k}\right](\left[\frac{m}{k}\right]+1)}{2} \sum_{d|k} k\mu(\frac{k}{d}) \frac{k}{d} \]
\[\sum_{k=1}^{\min(n,m)} \frac{\left[\frac{n}{k}\right](\left[\frac{n}{k}\right]+1)}{2} \frac{\left[\frac{m}{k}\right](\left[\frac{m}{k}\right]+1)}{2} \sum_{d|k} k\mu(d) d \]
\[f(n) = \sum_{d|n} n\mu(d) d\]
\[\frac{f(n)}{n^{2}} = \sum_{d|n} \frac{1}{d} \mu(\frac{n}{d}) \]
\[h(n) = \frac{f(n)}{n^{2}} = \sum_{d|n} g(d) \mu(\frac{n}{d}) \ \ \ g(n)=\frac{1}{n}\]
$g$가 곱셈적 함수이고 조건을 만족하므로 $h$ 역시 곱셈적 함수이다.
\[g(p^{k})=\sum_{i=0}^{k} h(p^{k})\]
\[g(p^{k})-g(p^{k-1}) = h(p^{k})=\frac{f(p^{k})}{p^{2k}}\]
\[f(p^{k})=p^{k}-p^{k+1}\]
\[3.\ \ \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{lcm}(i, j) |\mu(gcd(x,y))|\]
이것 역시 위와 같은 방식으로 정리하면 다음 식을 얻는다.
\[\sum_{k=1}^{\min(n,m)} \frac{\left[\frac{n}{k}\right](\left[\frac{n}{k}\right]+1)}{2} \frac{\left[\frac{m}{k}\right](\left[\frac{m}{k}\right]+1)}{2} \sum_{d|k} k\mu(\frac{k}{d}) \frac{k}{d}|\mu(d)| \]
\[h(n) = \frac{f(n)}{n^{2}} = \sum_{d|n} g(d) \mu(\frac{n}{d}) \ \ \ g(n)=\frac{|\mu(n)|}{n}\]
$d,\ \mu(d)$가 각각 곱셈적 함수이므로 $g(n)$역시 곱셈적 함수이다. 따라서 $h(n)$ 역시 곱셈적 함수이다.
\[f(p^{k})=p^{k}|\mu(p^{k})|-p^{k+1}|\mu(p^{k-1})|\]
\[k=1,\ \ f(p)=p-p^{2}\]
\[k=2,\ \ f(p^{2})=-p^{3}\]
\[k \ge 3,\ \ f(p^{k})=0\]
'수학' 카테고리의 다른 글
Extension of Wilson's Theorem and its application (12) | 2022.07.14 |
---|---|
Modulo Prime Power Trick (0) | 2022.01.28 |
조합 더하기 (0) | 2021.12.20 |
중복 조합 (0) | 2021.11.07 |
정n각형의 대각선 (0) | 2021.10.09 |